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ABSTRACT
The spin evolution of main sequence stars has long been of interest for basic stellar evolution, stellar aging, stellar activity, and
consequent influence on companion planets. Observations of older than solar late-type main-sequence stars have been interpreted
to imply that a change from a dipole-dominated magnetic field to one with more prominent higher multipoles might be necessary
to account for the data. The spin-down models that lead to this inference are essentially tuned to the sun. Here we take a different
approach which considers individual stars as fixed points rather than just the Sun. We use a time-dependent theoretical model to
solve for the spin evolution of low-mass main-sequence stars that includes a Parker-type wind and a time-evolving magnetic field
coupled to the spin. Because the wind is exponentially sensitive to the stellar mass over radius and the coronal base temperature,
the use of each observed star as a separate fixed point is more appropriate and, in turn, produces a set of solution curves that
produces a solution envelope rather than a simple line. This envelope of solution curves, unlike a single line fit, is consistent with
the data and does not unambiguously require a modal transition in the magnetic field to explain it. Also, the theoretical envelope
does somewhat better track the older star data when thermal conduction is a more dominant player in the corona.

Key words: stars: late-type – stars: low-mass – stars: solar-type – stars: mass-loss.

1 INTRODUCTION

Understanding the coupled spin-activity evolution of stars is of inter-
est both for the basic physics of rotating stellar evolution and stellar
activity, for determining stellar ages via gyrochronology, and for
quantifying the influence of stellar activity on companion planetary
atmospheres. Predicting the spin evolution of main sequence stars
and the associated activity ultimately requires an accurate model for
the coupled evolution of theirmagnetic fields, their spin, their activity
and mass loss.
Until recently the standard period-age evolution for main sequence

solar-like FGK stars has been divided into two regimes, saturated and
unsaturated. The empirically determined transition between them
occurs at �̃�𝑜 ∼ 0.13, where the Rossby number �̃�𝑜 is defined as
�̃�𝑜 = 𝑃/𝜏𝑐 , with 𝑃 being the star’s rotation period and 𝜏𝑐 the stellar
model-inferred convective turnover time (Wright et al. 2011; Reiners
et al. 2014). Very young, X-ray luminous stars are in the saturated
regime where their X-ray to bolometric luminosity ratio is nearly in-
dependent of rotation rate. Older stars are in the unsaturated regime
for which the period age relation has been traditionally characterized
by the empirical Skumanich law (Skumanich 1972). Recently how-
ever, for a sub-population of stars older than the sun, the spin-down
rate has been purported to be slower than that of the Skumanich
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law(Skumanich 1972) and slower than that predicted by some stan-
dard spin-down models with a fixed magnetic field geometry (Matt
et al. 2012; Reiners & Mohanty 2012; van Saders & Pinsonneault
2013; Gallet & Bouvier 2013; Matt et al. 2015; van Saders et al.
2016). This has led to the suggestion that dynamos in these stars may
be incurring a state transition from dipole to one in which the field is
dominated by higher multipoles that less effectively remove angular
momentum (van Saders et al. 2016). Such a transition would then
warrant a theoretical explanation.
The importance of this potential transition warrants further in-

vestigation to assess whether it is unambiguous. In particular, how
precise are the predictions of spin evolution from current theoretical
models that invoke no dynamo transition, and how are these models
used to obtain a predicted envelope of spin-period evolution bounds
for the evolution of a population of stars similar to, but not identical
to, the Sun?
To address this, we study the time evolution of the rotation pe-

riod for older-than-solar late-type stars using an example theoretical
model for the coupled time evolution of the X-ray luminosity, mag-
netic field strength, mass loss and rotation. Importantly, the observed
data for each star provides boundary conditions needed to solve the
system of equations for each specific star. We do not assume that
each star is an identical twin to the sun. This distinction proves to be
important in limiting the precision of what can be inferred and the
robustness of whether the observations definitively reveal the need
for a dynamo transition in each star.
In Section 2, we summarize the minimalist theoretical model that
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2 K. Kotorashvili et al.

couples the time evolution of X-ray luminosity, rotation, magnetic
field and mass loss (Blackman & Owen 2016). In Subsection 2.3
we provide expressions for X-ray luminosity and mass loss as a
function of the X-ray coronal temperature for cases when thermal
conduction is dominant andwhen thermal conduction can be ignored.
Thermal conduction can reduce the hot gas supply to the wind,
lowering its ability to spin down the star, but also keeps the magnetic
field stronger longer which would exacerbate spin down. The net
effect of this competition has yet to be quantified. In Section 3 we
obtain solutions for the time evolution of the rotation period of each
individual star in a sample of old stars with observed spins and
ages, using their observed stellar properties as fixed point boundary
conditions for the solutions. We find that even the small variations
in observed properties (e.g. magnetic field, mass, radius) between
solar-like stars, makes fitting an evolution model to a single star like
the Sun not sufficiently representative of the population to identify
that the population as a whole is incurring a dynamo transition. We
conclude in Section 4 and address some broader implications for
comparing theory and observation.

2 PHYSICAL MODEL AND EQUATIONS

Main sequence low-mass stars spin down as a consequence of their
magnetized stellar winds (Parker 1958; Schatzman 1962; Weber &
Davis 1967; Mestel 1968). F, G , K and M stars with masses in the
range 0.35𝑀� < 𝑀 < 1.5𝑀� have a convective zone surrounded by
a radiative zone and are in that respect potentiallymost solar-likewith
respect to their dynamos (Parker 1955; Steenbeck & Krause 1969).
The magnetic field anchors the stellar wind to the surface of the star,
forcing it to co-rotate up to theAlfvén radius, so angularmomentum is
lost from the star. As a result, the reduced angular momentum means
reduced free energy available for the dynamo, and the magnetic field
and X-ray luminosity also decrease. Therefore the strength of the
magnetic field at the surface, the rate of angular momentum loss,
X-ray luminosity and the rotation period are fundamentally linked
(Kawaler 1988).
Here we use and adapt a minimalist holistic model for this coupled

time evolution of X-ray luminosity, mass loss, rotation and magnetic
field strength (Blackman & Owen 2016) to explain the flattening in
the observed period–age relation for older stars than the sun. In this
model, some fraction of dynamo-generated magnetic field lines are
considered open, allowing stellar wind to remove angular momen-
tum,while some fraction of field lines are considered closed, sourcing
the thermal X-ray emission. The magnetic field expression is based
on a dynamo saturation model in a regime where the total saturated
field strength depends on the rotation rate The dynamo-produced
magnetic field is then mutually evolving with the spin evolution of
low-mass main-sequence stars in this slow rotator regime.
In this section, we briefly summarize the minimalist theoretical

model that couples the time evolution of the aforementioned stellar
properties, discuss the main ingredients of the model, and point
out a few numerical coefficient corrections to previous work. We
also apply the formalism for stars other than the Sun and use the
properties of each individual star for which we have observed data
as a boundary condition for respective solutions. The importance of
this as it pertains to making the theoretical prediction of spin-down
with age an "envelope" rather than a "single line" will be exemplified
and emphasized later in the paper. We provide only the streamlined
set of resulting equations here, and the detailed derivations of the
original model equations on which our revised derivations are based
can be found in Blackman & Owen (2016).

2.1 Saturated magnetic field and X-ray luminosity

The dynamo-produced magnetic fields are estimated (Blackman &
Thomas 2015; Blackman & Owen 2016) by: (1) using a generalized
correlation time for dynamos that equals the convection time (𝜏𝑐) for
slow rotators and becomes proportional to the rotation time for fast
rotators and (2) using a dynamo saturation model, based on the com-
bination of magnetic helicity evolution and loss of magnetic field by
magnetic buoyancy (Blackman & Field 2002; Blackman & Branden-
burg 2003). In the slow-rotator regime of interest, the field saturation
depends on the rotation rate, but the exact field saturation model is
less important than the fact that there remains a spin dependence of
the field strength and that the saturation time (of order cycle period)
is short compared to the Gyr time scales of secular evolution we are
interested in. This results in the expression for normalized surface
radial magnetic field:

𝑏𝑟 ≡ 𝐵𝑟∗ (𝑡)
𝐵𝑟 ,∗𝑛

= 𝑔𝐿 (𝑡)
(
𝑠

𝑠∗

)1/6√︄1 + 𝑠∗ �̃�𝑜∗
1 + 𝑠�̃�𝑜

, (1)

where 𝐵𝑟 ,∗𝑛 is present-day radial magnetic field value for each star

(here 𝑛 indicates "now") and 𝑔𝐿 (𝑡) =

(
1

1.4−0.4𝑡

) 𝜆−1
4 . This factor

approximates the fusion-driven increase in the bolometric luminosity
with time 𝑡 in units of solar age from solar models (Gough 1981, e.g.),
and deviates from unity only if L𝑏𝑜𝑙 evolves. We crudely apply the
same approximation for other solar-like stars scaled in terms of their
age. More detailed empirical fits for each stellar model could be
inferred but this is beyond the level of precision required for present
purposes. . Here 𝑠 is a shear parameter defined as |Ω0 −Ω(𝑟𝑐 , 𝜃𝑠) | =
Ω0/𝑠, whereΩ is surface rotational speed; 𝜃𝑠 is a fiducial polar angle;
𝑟𝑠 is a fiducial radius in the convective zone and 𝜆 is a parameter
representing the power law dependence of the magnetic starspot area
covering fraction Θ on X-ray luminosity L𝑋 , namely Θ ∝ L𝜆

𝑋
.

In our case, we take 𝜆 = 1/3, consistent with the range inferred
from observations of star spot covering fractions (Nichols-Fleming
&Blackman 2020) and we fix the shear parameter at 𝑠 = 8.3, because
the transition from the saturated to the unsaturated regime of X-ray
luminosity was best matched theoretically with this value (Blackman
& Thomas 2015; Blackman & Owen 2016). In practice, this has to
be determined with detailed calculations, but the specific value does
not affect the overall message of the present paper as our focus is
on the unsaturated regime where the shear term contribution to the
correlation time is small.
The estimated X-ray luminosity derived in Blackman & Thomas

(2015) is the product of the magnetic energy flux, averaged over
the change over a stellar cycle for sun-like stars (Peres et al. 2000),
times the surface area through which the magnetic field penetrates
the photosphere. The result is

L𝑥 = KL𝑚𝑎𝑔 ' K 2
3

( 𝐵2
𝜙

8𝜋

)2
Θ𝑟2𝑐
𝜌𝑣

, (2)

where 𝜌 is a density and 𝑣 is a turbulent convective velocity; and
K defines how much magnetic energy goes to X-ray luminosity. In
(Blackman & Owen 2016) K was approximated as 1/2 based on
the coronal equilibrium solution when conduction is unimportant.
We find this is also an acceptable approximation when conduction
dominates so we adopt it. This leads to the relation between X-ray
luminosity and radial magnetic field (Blackman & Owen (2016)):

𝑙𝑥 ≡ 1
1.4 − 0.4𝑡

(
𝑠

𝑠∗

) 2
3(1−𝜆)

(
1 + 𝑠∗ �̃�𝑜∗
1 + 𝑠�̃�𝑜

) 2
1−𝜆

= 𝑏
4
1−𝜆
𝑟 . (3)
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where �̃�𝑜∗ is the Rossby number for each individual star. For the sun
�̃�𝑜 ∼ 2 Blackman & Thomas (2015).

2.2 Angular velocity evolution

Blackman & Owen (2016) considered angular momentum loss by
the stellar wind in the equatorial plane and used the (Weber & Davis
(1967)) model to find the surface toroidal magnetic field and the
equation for angular velocity. Following derivations in Weber &
Davis (1967), Lamers & Cassinelli (1999) and Blackman & Owen
(2016) for the Alfvén radius we have

𝑟𝐴

𝑟∗
=

(
1 −

𝑟∗𝐵𝑟∗𝐵𝜙∗
¤𝑀Ω∗

)1/2
=

(
1 +

𝑟∗ |𝐵𝑟∗ | |𝐵𝜙∗ |
¤𝑀Ω∗

)1/2
, (4)

where compared to the same equation in Blackman & Owen (2016),
we emphasize that there is a positive sign when absolute values are
used because of the opposite signs of 𝐵𝜙∗ and 𝐵𝑟∗.
Separate equations for 𝑟𝐴𝑟∗ and toroidal magnetic field are:

𝑟𝐴

𝑟∗
=

𝑏𝑟∗

¤𝑚1/2�̃�1/2
𝐴

𝑟∗𝐵𝑟 ,∗𝑛
¤𝑀1/2∗𝑛 𝑢

1/2
𝐴,∗𝑛

, (5)

𝑏𝜙∗ ≡
𝐵𝜙∗ (𝑡)
𝐵𝜙,∗𝑛

= − ¤𝑚𝜔∗
𝑏𝑟∗

𝑀∗𝑛Ω∗𝑛
𝑟∗𝐵𝜙,∗𝑛𝐵𝑟 ,∗𝑛

[
𝑟2
𝐴

𝑟2∗
− 1

]
, (6)

where 𝐵𝜙,∗𝑛 is a present-day toroidal magnetic field value for each
star; ¤𝑚 is a mass loss derived later (see equations (17) and (18)
for regime I and regime II respectively); 𝜔∗ (𝑡) = Ω(𝑡)/Ω∗𝑛, where
Ω∗𝑛 represents the present day value of angular velocity for each
individual star. For the Sun, Ω∗𝑛 = Ω� = 2.97 · 10−6/𝑠2, 𝐵𝜙,∗𝑛 =

𝐵𝜙� = 1.56 · 10−2𝐺, 𝐵𝑟 ,∗𝑛 = 𝐵𝑟 � = 2𝐺. For other stars, the
corresponding values in Table 1 will be used. In equation (5), �̃�𝐴(𝑡)
is the normalized Alfvén speed given by

�̃�𝐴(𝑡) ≡
𝑢𝐴

𝑢𝐴,∗𝑛
=

√︂
𝑇∗
𝑇∗𝑛

𝑊𝑘 [−𝐷 (𝑟𝐴)]
𝑊𝑘 [−𝐷 (𝑟𝐴,∗𝑛)]

, (7)

where𝑇∗ is the coronalX-ray temperature and𝑇∗𝑛 is the coronalX-ray
temperature at present time (now) for each specific star.𝑊𝑘 [−𝐷 (𝑟𝐴)]
is the Lambert W function for Parker wind solutions 𝑘 = 0 for 𝑟 ≤ 𝑟𝑠
and 𝑘 = −1 for 𝑟 ≥ 𝑟𝑠 (Cranmer 2004) and

𝐷 (𝑟𝐴) =
(
𝑟𝐴

𝑟𝑠

)−4
exp

[
4
(
1 − rs
rA

)
− 1

]
. (8)

The sonic radius is given by
𝑟𝑠

𝑟∗
=
𝐺𝑀

2𝑐2𝑠𝑟∗
(9)

with isothermal sound speed 𝑐𝑠 ∝ 𝑇1/2.
The evolution of stellar angular velocity in dimensionless form is

given by

𝑑𝜔∗
𝑑𝜏

≡ −𝜔∗
𝑞𝑏2𝑟
𝑚�̃�𝐴

𝐵2𝑟 ,∗𝑛𝜏∗𝑛
𝑀∗𝑛𝑢𝐴,∗𝑛

, (10)

where 𝜏� is present-day solar age; 𝑞 is the inertial parameter, that
depends on internal angular momentum transport and defines what
fraction of the star contributes to the spin-down (and corrected a
typo on the right of equation (41) of Blackman & Owen (2016)
which had residual factor of Ω�). We use 𝑞 = 1 for all stars, which
indicates a conventional assumption that the field is coupled to the
moment of inertia of the full stellar mass. This could in principle be
violated if the field were not anchored sufficiently deeply and angular
momentum transport within the star was inefficient.

2.3 Coronal Equilibrium: relation between L𝑥 , ¤𝑀 and 𝑇0
The above equations show that X-ray luminosity, dynamo-produced
magnetic field and angular velocity are all coupled. To determine how
all of these quantities are connected to the mass loss rate, we follow
the procedure of Blackman & Owen (2016) but since that paper
focused on younger-than-solar stars, here we study both younger and
older stars and generalize the equations accordingly.
Magnetic fields are the source of input energy to the corona in our

model, which is then distributed into either winds, x-rays, or lost to
the photosphere by thermal conduction. Equilibrium is established
between the sinks of mass loss, X-ray radiation and conduction over
time scales short compared to spin-down time scales and can be used
to determine the dominant sinks of the magnetic energy flux.
According to Hearn (1975), for a given coronal base pressure,

there is an average coronal temperature that minimizes energy loss.
The minimum coronal flux condition is given by

𝜕

𝜕𝑇
(𝐹𝑊 1 + 𝐹𝑐 + 𝐹𝑥) =

𝜕

𝜕𝑇
𝐹𝐵 = 0, (11)

where 𝐹𝐵 is the flux ofmagnetic energy sourced into the coronal base
and 𝐹𝑊 1, 𝐹𝑐 , 𝐹𝑥 are respectively the wind flux, conductive loss, and
the radiative (X-ray) loss, from the one density scale height region
above the chromosphere.
The expression for coronal energy loss in the stellar wind is given

by

𝐹𝑊 1 = 3.1 × 106𝑝0𝑇∗
1/2
𝑒
3.9𝑚∗

𝑟∗

(
1− 1

𝑇∗

)
erg

𝑐𝑚2 · 𝑠
, (12)

where we used the isothermal Parker wind solution (Parker 1955)
along with the assumption of large-scale magnetic fields being ap-
proximately radial out to the Alfvén radius (𝑟𝐴). Here 𝑇∗ =

𝑇∗
𝑇 ′
∗
is a

dimensionless temperature with a different normalization parameter
𝑇 ′
∗ for each star; 𝑚∗ = 𝑀

𝑀∗𝑛
and 𝑟∗ = 𝑅0

𝑅∗𝑛
, where 𝑀∗𝑛 and 𝑅∗𝑛 repre-

sent a specific individual stellar mass and radius. Normalizing stellar
parameters to individual stars, we then have 𝑚∗ = 𝑟∗ = 1. We also
use 𝑝0 ∼ 𝜌0𝑐

2
𝑠 where the subscript 0 indicates values at the coronal

base and we use CGS units for 𝑝0.
For the X-ray radiation flux, we have

𝐹𝑥 = 1.24 × 106
𝑝20

𝑇∗
5/3

𝑟2∗
𝑚∗

erg
𝑐𝑚2 · 𝑠

, (13)

For the conductive loss,

𝐹𝑐 = 4.26 × 106𝑝0𝑇∗
3/4 Θ̃
4𝜋

erg
𝑐𝑚2 · 𝑠

, (14)

where the solid angle correction fraction Θ̃
4𝜋 ≤ 1 arises because

conduction down from the corona is assumed to be non-negligible
only along the fraction of the solid angle covered with field lines
perpendicular to the surface.
There is a monotonic relation between the base pressure of the

corona and the energy density at coronal equilibrium, and all three
energy losses increase with the base coronal pressure. The above
equations lead to an equilibrium pressure (with corrected numerical
coefficients in the first and third term, as well as the corrected factor
of 𝑚∗

𝑟∗
in the last term compared to Blackman & Owen (2016))

𝑝0 =
𝑚∗
𝑟2∗
0.12Θ̃𝑇

29
12
0∗ + 𝑚∗

𝑟2∗
0.75𝑇

13
6
0∗ 𝑒

3.9𝑚∗
𝑟∗

(
1− 1

�̃�0∗

)

+ 𝑚
2
∗
𝑟3∗
5.85𝑇

7
6
0∗𝑒
3.9𝑚∗

𝑟∗

(
1− 1

�̃�0∗

)
,

(15)
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Figure 1. Normalized energy fluxes of X-rays 𝐹𝑥
𝐹𝑥,∗𝑛 (blue); thermal con-

duction 𝐹𝑐
𝐹𝑐,∗𝑛 (green);, and mass outflow

¤𝑀
𝑀∗𝑛 (orange) are shown for each

individual star of Table 1. Similar plots were shown in Blackman & Owen
(2016) but only for the sun. The y-axis is in units of individual stellar val-
ues for each quantity and the unobserved equilibrium temperature 𝑇0∗ for
each star is normalized such that a transition between the dominance and
sub-dominance of thermal conduction occurs at dimensionless �̃�0∗ = 0.5. In
regime I, (�̃�0∗ < 0.5), thermal conduction is dominant, but it is subdominant
in regime II (�̃�0∗ > 0.5), where 𝑙𝑥 ' ¤𝑚. Regime I corresponds to older
and regime II to younger phases of the main sequence for a given star. The
envelope of these curves for the different stars produces the bands of color
for each energy flux.

where 𝑇0∗ =
𝑇0∗
𝑇 ′
∗
, 𝑇0∗ is the coronal temperature at equilibrium for

each specific star. For the present solar coronal temperature we take
𝑇0,∗𝑛 ∼ 𝑇� ∼ 1.5 × 106𝐾 and for 𝑇 ′

∗ we used 𝑇 ′
∗ = 𝑇 ′

� = 3 × 106𝐾 ,
so that at 𝑇0∗ = 0.5, 𝑙𝑥 =

L𝑥

L𝑥,∗𝑛
= 1 and ¤𝑚 =

¤𝑀
𝑀∗𝑛

= 1.
Fig.1 shows radiation, conduction and total coronal wind fluxes
𝐹𝑥

𝐹𝑥,∗𝑛
, 𝐹𝑐

𝐹𝑐,∗𝑛
, ¤𝑚 =

𝐹𝑊 1�̃�0,∗𝑛
𝐹𝑊 1,∗𝑛�̃�0∗

as a function of equilibrium temperature,

where 𝑇0,∗𝑛 is the coronal temperature at present time for sun-like
stars. All the quantities (y-axis) and the equilibrium temperature (x-
axis) are normalized to their respective stellar values for an individual
star. We define Regime I as the lifetime phase of a star for which
thermal conduction flux dominates the outflow flux and Regime II
when the reverse is true. This occurs at a different coronal equilibrium
temperature 𝑇0∗ specific to each star. We then define the transition
to occur at the same arbitrary dimensionless value of 0.5 for each
star such that 𝑇0∗ < 0.5 corresponds to regime I and 𝑇0∗ > 0.5
corresponds to regime II. The vertical line at 𝑇0∗ = 0.5 represents
the transition between the two regimes which have different relations
between X-ray luminosity and mass loss.

2.3.1 Regime I (conduction dominated)

In this regime, which generally corresponds to the spun-down older
main-sequence phase of a given star, the first term of equation (15)
dominates. Consequently, the normalized value for the X-ray lumi-
nosity is 𝑙𝑥 =

L𝑥

L𝑥,∗𝑛
=

𝐹𝑥

𝐹𝑥,∗𝑛
, which, for each star can be written

𝑙𝑥 '
(
𝑇0∗
𝑇0,∗𝑛

) 19
6

. (16)

The normalized mass loss is ¤𝑚 =
¤𝑀

𝑀�

¤𝑚 '
(
𝑇0∗
𝑇0,∗𝑛

) 23
12

𝑒

3.9
�̃�0,∗𝑛

𝑚∗
𝑟∗

(
1− �̃�0,∗𝑛

�̃�0∗

)
, (17)

which couples with the three other stellar properties discussed above.

2.3.2 Regime II (no conduction)

In this regime, which generally corresponds to the younger, faster-
rotating phase of a given star, the second term on the right of equation
(15) dominates, which is the outflow flux term. So for 𝑙𝑥 and ¤𝑚 we
have (Blackman & Owen 2016)

𝑙𝑥 ' exp
[
ln(𝑇0∗) +

7.8
𝑇0∗

𝑚∗
𝑟∗

(
𝑇0∗
𝑇0,∗𝑛

− 1
)]

' ¤𝑚. (18)

3 TIME-EVOLUTION OF ROTATION PERIOD

We numerically solved the four equations (3), (6), (10) and (17)
or (18) respectively for regimes I and II, along with equations (5)
and (7) for the spin evolution. Importantly, we solved these equa-
tions for individual stars, using measured stellar properties as a fixed
point (boundary condition) corresponding to the observations of that
particular star. The set of solutions comprises an envelope of these
individual curves.

3.1 Solutions and comparison to data

Data Table 1 shows the properties of the G-type and F-type stars
available for the study. Most of the G stars come from a sample from
21 Kepler with asteroseismology determined ages and measured ro-
tation rates, with effective temperatures between 5700-5900 K (van
Saders et al. 2016; Creevey, O. L. et al. 2017). In addition, we include
the stars 18 Sco and 𝛼 Cen A with less precisely measured parame-
ters (van Saders et al. (2016); Metcalfe et al. (2022) and references
therein)). Also, we have included a few stars with measured surface
magnetic fields and Zeeman Doppler image inferred chromospheric
rotation periods from the Bcool project magnetic survey (Marsden
et al. 2014). Note that, compared to the Kepler sample, the Bcool
survey does not provide precise photosphere rotational periods; how-
ever, it provides more precise measurements for magnetic fields. We
will present spin evolution solutions for stars 1-10 from this data
table for both regimes. The other data points are only for comparison
to solutions.
Fig. 2 shows the time evolution of the rotation period for individual

stars. The top panel shows solutions for regime I, where energy loss
due to conduction is dominant and stellar wind energy loss is very
low. The bottom panel shows solutions for regime II, where conduc-
tion is negligible, and the X-ray energy losses equal that of the stellar
wind. For most stars plotted, we chose the coronal temperature1 as
𝑇0,∗𝑛 = 1

2.4 for regime I and 𝑇0,∗𝑛 = 1
1.6 for regime II solutions.

These values correspond to the equilibrium temperatures for the so-
lar minimum and maximum (Blackman & Owen 2016; Johnstone
et al. 2015). Overall choosing a different value for 𝑇0,∗𝑛 for both
regimes does change the respective slopes of the solutions, but the
ranges chosen are consistent with bounds on observed stellar data
Johnstone et al. (2015). If we knew the present X-ray temperature,

1 For stars 2 and 10 form Table 1 we have used �̃�0,∗𝑛 = 1
2.1 for regime I

solutions.
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Figure 2. The two panels show envelopes of solution curves for the time
evolution of the rotation period, where each observed star is a fixed point on
the individual curve. Panel a and b correspond to the regime I and regime
II solutions, where the y and x-axis are normalized to solar period and age.
Data points and boundary conditions used to find individual solution curves
are given in Table 1. Corresponding solutions for row numbers therein are
color-coded as 1 - red, 2 - purple, 3 - orange, 4 - green, 5 - magenta, 6 - cyan,
7 - blue, 8 - dark green, 9 - dark cyan and 10 - pink. Open circles correspond
to data points from the Bcool project magnetic survey (respectively 8, 9,
10 and 13 from Table 1). (Marsden et al. 2014). The Sun is marked as red
�. Triangles represent a star transitioning from the main-sequence to the
subgiant phase and a subgiant (respectively 14 and 15 from Table 1). The
vertical line represents the cutoff before the subgiant phase for the stars 1-7 in
Table 1. The blue-shaded region represents the envelope of solutions for all
the stars except the ones with large uncertainties in age from the Bcool project.
Both regime I and regime II solutions are compared with the Skumanich law
(black dotted line), a standard rotational evolution model (black dot-dashed
line) (van Saders et al. 2016), a modified rotational evolution model (black
dashed line) and the gray shaded region (Metcalfe & van Saders 2017) that
represents the expected dispersion due to different masses, metallicities and
effective temperatures between 5600-5900 K.

this would pin down whether a given star is presently in regime I or
regime II, and which solution to use. Instead, we compare the con-
sequences of time evolution solutions from either regime for a given
star.We find that the implications are not that sensitive to knowing the
X-ray temperature over the bounded range because either regime’s
solutions ultimately lead to our same main conclusions.
Both panels of Fig. 2 also show the modified Skumanich law

(Mamajek 2014) 𝑃 = 𝑡0.55 and a standard rotational evolution model
(van Saders & Pinsonneault 2013; van Saders et al. 2016). Regime
I solutions have decreasing slopes as does the empirical Skumanich
law, which captures the data trend quite well. Regime II solutions

Figure 3. Panels a and b represent the solutions for the time evolution of
the rotational period (purple) for one specific star (star 2 from the Table 1)
to demonstrate the sensitivity of our solutions to magnetic field strength.
These plots show a significant spread for different magnetic field strength
normalization values for both regimes I and II. Values used for the magnetic
field from bottom to top are 𝐵𝑝 = 0.6 G, 1 G, 2 G, 2.4 G, respectively. Data
points, black curves (dashed, dotted, dot-dashed) and shaded area have the
same meaning as in Fig 2. The vertical line represents the cutoff before the
subgiant phase for the stars 1-7 in Table 1.

have increasing slopes as does the rotational evolution model used
by van Saders et al. (2016), but our solutions comprise an envelope
of curves, each passing through a specific star. This envelope is
consistent with the observed period-age relation data. In Fig. 2 blue
shaded region corresponds to an envelope of solutions for stars with
a more precisely measured rotation period and age. It shows that even
without including stars from Bcool project this blue-shaded envelope
covers the region with the most stars. We include the subgiant star
data points on the plot (14 an 15 form Table. 1) we do not show
their evolution solutions because we are focusing on main sequence
stars only and whether the main sequence stars themselves exhibit
a spindown transition. van Saders et al. (2016) does include the
subgiant points in their data fitting, and this strongly affects the
shape of their shaded area, which rises at late times.
Observations do not provide accurate Rossby numbers for stars 2-7

or magnetic fields for stars 2-4. Since these stars are similar to the sun
in other respects, for lack of a better option, we simply assume that
these quantities are comparable to solar values. Since the magnetic
field is the agent of energy transport into the corona, our solutions
are quite sensitive to magnetic field strength. To exemplify this we
present solutions for different magnetic field strengths in Fig. 3 for a
starwithout ameasuredmagnetic field. The top panel shows solutions

MNRAS 000, 1–8 (2022)
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Figure 4. Solutions for 𝑙𝑥 versus time for different magnetic field strengths
for star 2 form Table 1. This spread in the luminosities further demonstrates
the sensitivity of our solutions to surface magnetic field strengths. Here we
used the same magnetic field values and line styles as in Fig.3.

for regime I and the bottom panel for regime II using magnetic field
values 𝐵𝑝 = 0.6 G, 1 G, 2 G, 2.4 G. In both regimes we see the
conspicuous difference between solution curves for lower and higher
magnetic fields. Fig. 4 demonstrates the influence of magnetic field
strength on 𝑙𝑥 .
Generally, Figures 3 and 4 show that the broad spread of solutions

for the range ofmagnetic fields consideredmakes it difficult to predict
the exact evolution path for each star. This further highlights the
imprecision of any prediction for the population that would arise
by using one single-line curve. The theoretical prediction for the
population is an envelope of curves.

3.2 Physical role of thermal conduction in Regimes I and II

Asmentioned above, we assume that dynamo-produced fields source
the coronal energy, which in turn has three main processes for en-
ergy loss: stellar wind, thermal conduction and X-ray radiation. The
first two increase with increasing temperature, while X-ray radiation
decreases. This leads to an equilibrium with a minimum total coro-
nal flux (Hearn 1975). For regime I, thermal conduction and X-ray
luminosity dominate the energy loss leaving little contribution from
the stellar wind. Here conduction removes hot gas available for the
wind and the wind mass-loss rate correspondingly drops exponen-
tially with decreasing gas temperature. This, in turn, reduces the rate
of angular momentum loss. In regime II, conduction is sub-dominant
and wind loss and X-ray radiation dominate the coronal energy loss.
The difference in increasing and decreasing slope between regimes

in our solutions shown in Figure 2with colored curves is caused by the
relative influence of thermal conduction, which is more important at
low temperatureswhere it determines the relation between luminosity
and mass loss, and in turn, the coupled evolution of x-ray luminosity,
magnetic field strength, and spin.
In the spin evolution model used by van Saders et al. (2016),

the scaling between luminosity and mass loss is the same as in our
regime II, equation (18), although for different reasons. This may
help to explain why their solutions (shown as black dot-dashed line
in Figure 2) also have a faster rate of spin down. But their results for
the time evolution of the rotation period are quite different from ours
due to different parameter choices and a different relation between
luminosity and angular velocity. For our case 𝑙𝑥 ∼ 𝜔3 for 𝜆 = 1/3
and for their case 𝑙𝑥 ∼ 𝜔2.

3.3 Influence of feedback of rotation on magnetic field evolution

In regime I, the relationship between luminosity andmass loss is very
different from regime II. As a result the solutions in Figure 2 show a
decreasing slope, and are quite similar to the Skumanich relation for
older main sequence stars. Regime I overall shows better agreement
with the data, although our envelope of solutions using either regime
I or regime II can describe the observed period-age relation without
requiring a change of a dynamo mode.
That the solutions curves for regime I versus regime II in Fig. 2

are not hugely different can be explained by considering the feed-
back between the rotation and the magnetic field. For low mass loss
(regime I) the change in the angular momentum, and in turn, themag-
netic field is insignificant, while for regime II stars are losing angular
momentum faster, thereby reducing the magnetic field more than in
regime I. Because of the dynamical coupling between the magnetic
field and stellar rotation, reducing the magnetic field also reduces the
spin-down rate, resulting in a similar rotation period evolution to that
of regime.2

4 CONCLUSION

To study the time evolution of the stellar rotation period and the
period-age relationship for G and F-type main sequence stars we
have employed and generalized a minimalist holistic time-dependent
model for spin-down, X-ray luminosity, magnetic field, and mass
loss (Blackman & Owen 2016). The model combines an isothermal
Parker wind (Parker 1958), dynamo saturation model (Blackman &
Thomas 2015), a coronal equilibrium condition (Hearn 1975), and
assumes that angular momentum is lost primarily from the equatorial
plane (Weber & Davis 1967).
From a sample of older-than-solar stars chosen for having precise

measurements of period and age, we solved these evolution equa-
tions such that each star is a fixed point on a unique solution curve.
We argued that the envelope of these curves is a more appropriate
indicator of theoretical predictions than a single line fit through the
sun or any chosen star to represent the entire population.
We produce separate such envelopes for cases in which thermal

conduction is respectively less or more important, with the latter
appears to be in better agreement with the data. Overall, our results
suggest that a dynamo transition from dipole dominated to higher
multipole dominated is not unambiguously required to reduce the

2 Remember that these stars are in the unsaturated regime, where magnetic
field and X-ray luminosity do depend on spin.
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Table 1. Stellar properties of G-type and F-type stars used in our study (Wright et al. (2004); Bazot et al. (2012); Molenda-Żakowicz et al. (2013); Marsden
et al. (2014); van Saders et al. (2016); Creevey, O. L. et al. (2017); White, T. R. et al. (2017); Metcalfe et al. (2022))

KIC ID/Name Sp. Radius Mass Age Period Luminosity Rossby Magnetic field
or HIP no. Type (𝑅�) (𝑀�) (Gyr) (Days) (𝐿�) number (G)

1 Sun G2V 1.001 ± 0.005 1.001 ± 0.019 4.6 24.47 0.97 ± 0.03 2 2
2 9098294 G3V 1.150 ± 0.003 0.979 ± 0.017 8.23 ± 0.53 19.79±1.33 1.34 ± 0.05
3 7680114 G0V 1.402 ± 0.014 1.092 ± 0.030 6.89 ± 0.46 26.31±1.86 2.07 ± 0.09
4 𝛼 Cen A G2V 1.224 ± 0.009 1.105 ± 0.007 5.40 ± 0.30 22±5.9 1.55 ± 0.03
5 16 Cyg-A G1.5Vb 1.223 ± 0.005 1.072 ± 0.013 7.36 ± 0.31 20.5+2−1.1 1.52 ± 0.05 < 0.5
6 16 Cyg-B G3V 1.113 ± 0.016 1.038 ± 0.047 7.05 ± 0.63 21.2+1.8−1.5 1.21 ± 0.11 < 0.9
7 18 Sco G2Va 1.010 ± 0.009 1.020 ± 0.003 3.66+0.44−0.5 22.7 ± 0.5 1.07 ± 0.03 1.34

8 1499 G0V 1.11 ± 0.04 1.026+0.04−0.03 7.12+1.40−1.56 29+0.3−0.3 1.197 2.16 0.6 ± 0.5
9 682 G2V 1.12 ± 0.05 1.045+0.028−0.024 6.12+1.28−1.48 4.3+0.0−0.2 1.208 0.4 4.4 ± 1.8
10 1813 F8 1.18+0.06−0.05 0.965+0.02−0.02 10.88+1.36−1.36 22.1+0.2−0.2 1.315 1.95 2.4 ± 0.7

11 176465 A G4V 0.918 ± 0.015 0.930 ± 0.04 3.0 ± 0.4 19.2±0.8
12 176465 B G4V 0.885 ± 0.006 0.930 ± 0.02 2.9 ± 0.5 17.6±2.3
13 400 G9V 0.8+0.02−0.03 0.794+0.034−0.018 12.28+1.72−7.08 35.3+1.1−0.7 0.455 2 2.1 ± 1.0

14 6116048 F9IV-V 1.233 ± 0.011 1.048 ± 0.028 6.08 ± 0.40 17.26±1.96 1.77 ± 0.13
15 3656476 G5IV 1.322 ± 0.007 1.101 ± 0.025 8.88 ± 0.41 31.67±3.53 1.63 ± 0.06

𝑎 For 16 Cyg-A 16 Cyg-B and 18 Sco we used estimated mass loss rates from Metcalfe et al. (2022), based on the scaling relation ¤𝑀 ' 𝐹0.770.04𝑥 (Wood et al.
2021). For other stars we have used the Solar value.
* In our solutions we have used Solar values for these parameters.

rate of spin down, as there is not a clear contradiction between
theory and observation for the envelope of solutions without such a
transition when the theory depends on a Parker-type wind solution.

We explored the sensitivity of our solutions to stellar properties
that wemay not know for individual stars, such as the coronal base X-
ray temperature and magnetic field strength. Because the Parker-type
wind solution is integral to the model, we are forced to an exponential
sensitivity on the coronal base X-ray temperature. This limits the
precision of any theoretical or model prediction expressed as a single
line intended to capture the evolution of the stellar population. The
prediction should instead be expressed as an envelope of curves.
Said another way, the sample of observed data does not have enough
sufficiently identical stars to make an ensemble average prediction of
high precision. This connects to the broader need to more commonly
express limitations in precision of theory field theories applied to
astrophysical systems (Zhou et al. 2018).

Since it is not possible to obtain more than 1 data point for individ-
ual stars over their spin-down evolution lifetimes, more observations
to better nail down evidence for or against a spin-down transition
are desired. More data on individual more closely "identical" stars
at different times in their spin-down evolution would be desirable. In
addition, at the population level, period-mass plots for older clusters
than have presently been measured would be valuable. Observations
from the Kepler K2 mission have shown that by the time clusters
reach an age of 950Myr, period-mass relations appear to converge to
a relatively tight 1 to 1 dependence Godoy-Rivera et al. (2021). Sim-
ilar results were obtained for 2.7 Gyr-old open cluster Ruprecht 147
(Gruner & Barnes 2020), who found that stars lie in period-mass-
age plane with possible evidence for a mass dependence requiring
additional mass-dependent physics parameter variation (perhaps e.g.
relating to our 𝑞 below Eqn. 10 deviating from unity), in modeling
spin-down. If similar data could be obtained for much older clusters
and the tight relations were to show strong kinks or bifurcate into
more than one branch within the mass range 0.5 < 𝑀/𝑀� < 1.5
that we have considered, this would suggest that the population of

solar-like stars that we are focusing on would show population-level
evidence for a transition.

5 DATA AVAILABILITY

All the data used in the paper is either created theoretically from
equations herein, or given in Table 1.
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